Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chemosphere ; 341: 140051, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660789

RESUMO

In order to solve the problem of efficient desorption of per- and polyfluoroalkyl substances (PFAS) and regeneration of adsorbents, a novel biochar composite was prepared based on the quaternary ammonium groups and hydrophobicity of sulfobetaine polymer, which can be used for the efficient removal of various PFASs and has great regeneration ability. Through adsorption, regeneration and degradation experiment, the comprehensive effect of the novel biochar composite on the whole process of removal of PFAS was systematically investigated. The results showed that the maximum adsorption capacity of PFOS, PFOA, PFBS, and PFBA reached 634 mg/g, 536 mg/g, 301 mg/g and 264 mg/g, respectively. The adsorption process involved hydrophobicity, electrostatic, pore diffusion and complexation. The NaI + NaOH solution was used at 50 °C to achieve efficient regeneration of the adsorbent, which can be recycled more than 4 times. When the vacuum-ultraviolet (VUV)/sulfite reduction system was used for deep degradation of the regenerated solution, the effect of hydrated electrons on PFAS was enhanced due to the inclusion of NaI and NaOH in the regeneration reagent, resulting in an increase in the degradation efficiency (89.1%-99.9%) and defluorination efficiency (63.3%-84.1%). Based on the performance of BC-P(SB-co-AM) and the treatment efficiency of PFAS, the design idea of the whole process treatment technology of PFAS proposed in this work is expected to hold great promise in environmental applications. This work provides a novel idea and system for the efficient adsorption removal and desorption of PFAS, and subsequent deep degradation.


Assuntos
Fluorocarbonos , Adsorção , Hidróxido de Sódio , Difusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...